Trigonal-Bipyramidal νs . Tetragonal-Pyramidal Geometry in $[Mo(\eta^5-C_5H_5)CH_3(CO)diphos]$ Complexes

DIETER REHDER*, RIDVAN TALAY and VOLKER PANK

Institut für Anorganische Chemie der Universität, Martin-Luther-King-Platz 6, D 2-Hamburg 13, F.R.G.

Received January 11, 1984

UV irradiation of THF solutions containing equimolar amounts of $[Mo(Cp)CH_3(CO)_3]$ (Cp = η^5 - C_5H_5) and a bidentate phosphine ligand LL yields as the main component $[Mo(Cp)CH_3(CO)LL]$, which can be isolated by precipitation with heptane. This reaction path, which has been investigated for monodentate phosphines such as PMe₃ [1], PPh₃ [2] and $P(OPh)_3$ [3], is to be expected for a photo-induced substitution with CO elimination as the primary step [4]. In polymer matrices, the favoured primary step is the fission of the molybdenum-methyl bond [5]; CH_3 -free, dinuclear complexes $[Mo(Cp)(CO)L_2]$ (Mo- $(Cp)(CO)_{3}$ have also been observed as by-products in photo-reactions carried out in solution (L, e.g., PMe₃ [1]). More rigorous experimental conditions can generate hydrido complexes such as [Mo(Cp)-H(CO)₂P(OPh)₃] [3] and [Mo(Cp)H(CO)PPh(OCH₂-CH₂)₂NH] [6], and the ionic species [Mo(Cp)(CO)₂-LL] $[Mo(Cp)(CO)_3]$ [7].

We have recently reported on first investigations into the systems $[Mo(Cp)CH_3(CO)LL]$, where LL = $cis-Ph_2PCH=CHPPh_2$ (c-dpe), 1,2-C₆H₄(PPh₂)₂ and $1,2-C_6H_4AsPh_2(PPh_2)$ [8]. Interpretation of the ³¹P NMR spectra leads to the conclusion that solutions of these complexes should contain species with trigonal-bipyramidal geometry (the cyclopentadienyl ligand is considered here as a simple axial ligand). In the present work we present further evidence for trigonal geometry for complexes with $LL = Ph_2$ -PCH₂PPh₂ (dppm), Ph₂P(CH₂)₃PPh₂ (dppp), Ph₂- $As(CH_2)_2PPh_2$ (arphos) and c-dpe, based on ¹H (Cp and CH₃ region) and ³¹P NMR spectroscopic characteristics. c-Dpe, due to its unsaturated carbon back-bone, forms chelate-5 rings which are substantially rigid. With dppm trans positions for the two phosphorus functions in a potential tetragonal ${Mo(CH_3)(CO)LL}$ unit, such as postulated from the observation of two ${}^{1}H(Cp)$ signals for LL = $Me_2P(CH_2)_2PMe_2$ [9], can be excluded. Arphos should give rise to particularly simple spectra (lacking ${}^{31}P-{}^{31}P$ coupling).

Fig. 1. Trigonal-bipyramidal and tetragonal-pyramidal structures for the complexes [Mo(Cp)CH₃(CO)diphos], taking into account the inequivalency of the two phosphorus functions. The tetragonal ligand arrangement of [M(Cp)L₄] complexes is, according to theoretical considerations carried out by R. Hoffmann, the energetically preferred one [15] and has been established for complexes containing monodentate phosphines by, *inter alias*, ¹H [1] and ¹³C NMR spectroscopy [16].

Spectroscopic data, including those of selected compounds from the literature, are collated in Table I. The size of the ${}^{1}\text{H}{-}^{31}\text{P}$ coupling constants is a valuable indicator for the ligand arrangement in these complexes. Thus, coupling constants J(P-CH₃)_{cis} are around 12, J(P-CH₃)_{trans} around 2-3 Hz, and J(P-Cp) is ca. 1.5 Hz. No P-Cp coupling is observed in the complexes [Mo(Cp)CH₃(CO)₂PR₃] if the phosphine is cis to the methyl ligand; nonetheless, the Cp signal in [Mo(Cp)CH₃(CO)(PMe₃)₂] where the two phosphines reportedly are cis to CH₃, is a triplet [1]. ¹H shielding increases with increasing CO substitution and is greater in trans- than in cis-[Mo(Cp)CH₃(CO)₂-PMe₃].

The most intriguing aspect with the spectra of our bis(phosphine) complexes is the fact that there are two distinctly separate ³¹P resonances. Hence, contrasting with $[Mo(Cp)CH_3(CO)(PMe_3)_2]$, the P atoms are not equivalent, and there is only one possible ligand arrangement in a tetragonal or trigonal geometry (Fig. 1). Further, the cyclopentadienyl signals appear as doublets. In a tetragonal-pyramidal ligand arrangement, the two phosphorus atoms should couple in an approximately equivalent manner with the Cp protons, giving rise to a doublet of doublets (or, in limiting cases, a triplet). In addition, the Cp signals as compared with those of analogous complexes (Table I) are shifted substantially to lower frequencies (higher magnetic field). These findings can be interpreted in terms of a trigonal-bipyramidal ligand arrangement with one phosphorus function in the equatorial plane coupling to the Cp protons, and the other P in the more distant axial position where coupling to Cp is below the limit of resolution. It has been shown, in phosphine derivatives of [Fe- $(CO)_5$] that the coupling constants $J(^{31}P-^{13}CO)$ decrease with decreasing involvement of couplings of equatorial CO groups: [Fe(CO)₃(PEt₃)₂] (3 CO_{eq}) = 28 [10]; $[Fe(CO)_2(PMe_3)_2L]$ (2 CO_{eq}) = 24 and

® Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Complex	ν(CO) ^b (cm ⁻¹)	۵ (¹ H) _{Cp} ^c (ppm)	δ(¹ H) _{Me} ^c (ppm)	δ(³¹ P) ^d (ppm)	Lit.
[Mo(Cp)Me(CO)dppm]	1820	4.68(d, 1.3)	0.32(d, 2.3)	35.6/25.9(53.2), 310 K	Ð
		[4.55(m)]		$[64.4/-25.5^{f}(70^{j})]$	
[Mo(Cp)Me(CO)arphos]	1830	4.38(d, 1.2)	-0.13(d, 2.4)	98.3, 300 K; 97.8, 210 K	e
		[4.18, 4.39]	[-0.16, -0.28]	[95.1, 94.3]	
[Mo(Cp)Me(CO)c-dpe]	1850	4.06(d, 1.8)	-0.12(dd, 10.3/1.8)	102.8/96.4 (11.8), 300 and 210 K	e
	[1955, 1912, 1896,	[4.33(d, 1.2 ^g]	[0.01]	[99.8/84.2 (18), 300 K;	
	1782, 1763]			[101.8/83.6 (18), 210 K]	
[Mo(Cp)Me(CO)dppp]	1805	4.67(d, 1.5)	-0.22(m) ^h	53.8/51.2, 210 K	e
	[1955, 1930, 1815]	[5,16, 5.52; 4.27(m)]		[72.0/-17.6 ^f ; 47.7(17.7), 210 K]	
[Mo(Cp)Me(CO)(PMe ₃) ₂]	1787	4.89(t, 0.8)	-0.62(t, 12.8)	35.1	1
<i>cis</i> -[Mo(Cp)Me(CO) ₂ PMe ₃]	1011 1028 1868	5.16	0.13(d, 11.8)	23.4	1
trans-[Mo(Cp)Me(CO) ₂ PMe ₃]	1944, 1938, 1838	4.96(d, 1.6)	0.16(d, 2.8)	25.6	-
[Mo(Cp)Me(CO) ₂ PPh ₃]	1940, 1850	4.70(d, 2)			2
<i>cis</i> -[Mo(Cp)Me(CO) ₂ P(OPh) ₃]	1961, 1880	4.70	0.29(d, 11)		£
trans-[Mo(Cp)Me(CO) ₂ P(OPh) ₃]	1968, 1886	4.51(d, 1.2)	0.30(d, 3)		ю
[Mo(Cp)Me(CO) ₃]	2022, 1930	5.37	0.33		9
[Mo(Cp)CO(PMe ₃) ₂ {Mo(Cp)(CO) ₃ }]	1956, 1894, 1874	5.67(t, 1.2); 4.97		35.1	
[Mo(Cp)(CO)2 PPh(OR)2] ⁺	1990, 1900	6.0		198	9
[Mo(Cp)H(CO)2PPh(OR)2]	1945, 1860	5.26, 5.13	i	200	9

^aAbbreviations: Cp = $\eta^5 - C_5 H_5$, Me = CH₃, Ph = C₆H₅, dppm = Ph₂PCH₂PPh₂, arphos = Ph₂As(CH₂)₂PPh₂, c-dpe = *cis*-Ph₂PCH=CHPPh₂, dppp = Ph₂P(CH₂)₃PPh₂, PPh(OR)₂ = PhP(OCH₂CH₂)₂NH. Signals for by-products are given in square brackets. All data are for THF solutions (except of $\delta(^{31}P)$ for [Mo(Cp)CH₃(CO)dppm] in toluene) and at room temperature unless indicated otherwise ($\delta(^{31}P)$ values. ^bFor phases, see key references. ^{og}80 MHz; coupling pattern and coupling constants are given in parentheses: d = doublet of doublets, t = triplet, m = poorly resolved or multiplet. ^d(¹H), 36.44 MHz; coupling constants [²J(³¹P-³¹P) for dppm, ³J(³¹P-³¹P) for c-dpe] are in parentheses; throughout, doublets are observed. ^eThis work. ^fThe ligand is coordinated with only one of its Ph₂P groups. ^gNo methyl group present. ^hSee text for discussion. ¹\delta(¹H) for the hydride ligand is -6.41(65) and -6.23(23) Hz (ppm). ^jThe four components of the two doublets show a fine-structure splitting of 6 Hz.

19 [11]; $[Fe(CO)_4PEt_3]$ (3 CO_{eq} + 1 CO_{ax}) = 19 [12]; $[Fe(CO)_3Me_2P(CH_2)_2PMe_2]$ (2 CO_{eq} + 1 CO_{ax}) = 6.9 Hz [13].

Coupling pattern and position of the methyl protons do not allow for an unambiguous distinction between the two structure types (Fig. 1), if one assumes that $J(P_{ax}-CH_3)$ in trigonal-bipyramidal complexes is of the same order of magnitude as J(P-CH₃)_{trans}, namely around 2 Hz. The c-dpe complex shows the coupling pattern expected for the A part of an A_3XY spin system [X = P_{eq} (or P_{cis} , $Y = P_{ax}$ (or P_{trans})], *i.e.* a doublet of doublets with J(AX) = 10.3 and J(AY) = 1.8 Hz. For dppp the signal (centered at -0.22 ppm) is basically a doublet of doublets (J ca. 8 and 4 Hz), though poorly resolved. In the dppm complex, the methyl protons exhibit a doublet of J(HP) = 2.3 Hz despite the fact that two non-equivalent P atoms are present. The reduction of coupling interaction relative to that observed with the c-dpe complex may be a consequence of disturbed overlap due to angle distortions in the strained chelate 4 ring (for discussion of this phenomenon see ref. 14). Finally, in the arphos complex, there are two weak singlets (-0.16 and -0.28 ppm) which probably correspond to Ph₂As coordinated species, and a doublet (main signal at -0.13 ppm) of J(HP) = 2.4 Hz. The corresponding Cp resonance at 4.38 ppm is a doublet (1.2 Hz). If the above argument (coupling between Cp and P_{ax} is below the limit of resolution) holds, the Ph₂P group in this case occupies a position trans to CH₃ in a tetragonal-pyramidal structure.

References

- 1 H. G. Alt and J. A. Schwärzle, J. Organomet. Chem., 162, 45 (1978).
- 2 K. W. Barnett and P. M. Treichel, Inorg. Chem., 6, 294 (1967);
- K. W. Barnett, Inorg. Chem., 8, 2009 (1969).
- 3 R. B. King and K. H. Pannell, *Inorg. Chem.*, 7, 2356 (1968).
- 4 D. G. Alway and K. W. Barnett, *Inorg. Chem.*, 19, 1533 (1980).
- 5 R. B. Hitam, R. H. Hooker, K. A. Mahmoud, R. Narayanaswamy and A. J. Rest, J. Organomet. Chem., 222, C9 (1981).
- 6 J. Wachter, F. Jeanneaux and J. G. Riess, Inorg. Chem., 19, 2169 (1980).
- 7 R. B. King, K. H. Pannell, C. A. Eggers and L. W. Houk, Inorg. Chem., 7, 2353 (1968).
- 8 R. Talay and D. Rehder, Z. Naturforsch., 36b, 451 (1981).
- 9 R. B. King. L. W. Houk and K. H. Pannell, Inorg. Chem., 8, 1042 (1969).
- 10 B. E. Mann, Adv. Organomet. Chem., 12, 135 (1974).
- 11 H. Le Bozec, A. Gorgues and P. Dixneuf, J. Chem. Soc. Chem. Commun., 573 (1978).
- 12 B. E. Mann, J. Chem. Soc. Chem. Commun., 1173 (1971).
- 13 M. Akhtar, P. D. Ellis, A. G. McDiarmid and J. D. Odom, *Inorg. Chem.*, 11, 2917 (1972).
- 14 P. S. Pregosin and R. W. Kunz, NMR Basic Principl. Progr., 16, 1 (1979).
- 15 P. Kubaćčk, R. Hoffmann and Z. Havlas, Organometallics, 1, 180 (1982).
- 16 L. J. Todd, J. R. Wilkinson, J. P. Hickey, D. L. Beach and K. W. Barnett, J. Organomet. Chem., 154, 151 (1978).